ANAGRAMMI

Problema: Anagramma di MAMMA

Data una parola, quanti sono gli anagrammi, anche senza significato nella lingua italiana, di questa parola?

Esempio

Gli anagrammi della parola MAMMA solo tutte le parole di 5 lettere in cui compaiono due A e tre M

AAMMM	AMAMM	AMMAM	AMMMA	MAAMM
MAMAM	MAMMA	MMAAM	MMAMA	MMMAA

Come mai si tratta di 10 anagrammi? siamo sicuri che sono tutti? Per capirlo: per determinare un anagramma basta specificare quali posizioni hanno le due A tra i 5 posti disponibili

ESEMPIO-anagrammi di MAMMA-I modo

Ad esempio MAMAM corrisponde a scegliere l'insieme $\{2,4\}$ mentre MMMA corrisponde a scegliere l'insieme $\{4,5\}$

AA	MMM	AMAMM	AMMAM	AMMMA	MAAMM
{	[1, 2]	$\{1, 3\}$	$\{1, 4\}$	$\{1, 5\}$	{2,3}
MA	AMAM	MAMMA	MMAAM	MMAMA	MMMAA
{	[2, 4]	$\{2, 5\}$	{3,4}	$\{3, 5\}$	{4,5}

di conseguenza, posto N(MAMMA) il numero di anagrammi di MAMMA

$$N(MAMMA) = \binom{5}{2} = \frac{5!}{2!3!}$$

ESEMPIO-anagrammi di MAMMA-II modo

Si può pensare di avere a disposizione 5 tessere:

$$A_1$$
, A_2 , M_1 , M_2 , M_3

Possiamo permutarle in 5! modi, ottenendo così sicuramente tutti gli anagrammi di MAMMA, ma alcune permutazioni corrispondono allo stesso anagramma: infatti as esempio

sono 3! 2! permutazioni che sono associate allo stesso anagramma MMMAA

In altre parole le 5! permutazioni delle 5 tessere A_1 , A_2 , M_1 , M_2 , M_3 si possono contare come $N_A(MAMMA) \cdot 3! \cdot 2!$ da cui di nuovo

$$N_A(MAMMA) = \frac{5!}{2!3!}$$

anagrammi di MATEMATICA

Data la parola MATEMATICA, quanti sono gli anagrammi, anche senza significato nella lingua italiana, di questa parola?

Nel caso di MATEMATICA, r=10 è il numero totale di lettere di cui è composta la parola MATEMATICA: inoltre si hanno

$$k_A=3$$
 A, $k_M=2$ M, $k_T=2$ T, $k_E=1$ E, $k_I=1$ I, $k_C=1$ C.

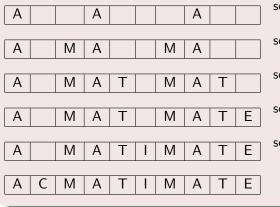
Si osservi che
$$3 + 2 + 2 + 1 + 1 + 1 = 10$$
, ovvero $k_A + k_M + k_T + k_E + k_I + k_C = r$.

Mostreremo ora che il numero $N_A(MATEMATICA)$ degli anagrammi è

$$\binom{10}{3,2,2,1,1,1} \stackrel{\text{def.}}{=} \frac{10!}{3! \, 2! \, 2! \, 1! \, 1! \, 1!}$$

Per convincersi che $N_A(MATEMATICA) = \frac{10!}{3! \, 2! \, 2! \, 1! \, 1! \, 1!}$ si può procedere in due modi.

numero degli ANAGRAMMI di MATEMATICA - I modo



scelgo le posizioni delle tre A in $\binom{10}{3}$ modi scelgo le posizioni delle due M in $\binom{7}{2}$ modi scelgo le posizioni delle due T in $\binom{5}{2}$ modi scelgo la posizione della E in $\binom{3}{1}$ modi scelgo la posizione della I in $\binom{2}{1}$ modi per la posizione della C rimane un solo modo

numero degli ANAGRAMMI di MATEMATICA - I modo

Per ottenere un anagramma si hanno $\binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{3!} = \frac{10!}{3!7!}$

$$\binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{3!} = \frac{10!}{3!7!}$$

scelte possibili per posizionare le 3 lettere A nei 10 posti a disposizione.

Una volta collocate le 3 A.

rimangono 7 posti tra i quali scegliere dove mettere le 2 M, e il numero delle scelte possibili è allora $\binom{7}{2} = \frac{7.6}{21} = \frac{7!}{2!5!}$ e si arriva a

scelte possibili per posizionare le 3 A e le 2 M.

Una volta collocate le 3 A e le 2 M,

rimangono 5 posti in cui mettere le 2 T, e le scelte possibili sono quindi

$$\binom{5}{2} = \frac{5 \cdot 4}{2!} = \frac{5!}{2!3!}$$
 e si arriva a

scelte possibili per posizionare le 3 A e le 2 M.

Procedendo in maniera analoga si hanno successivamente $\binom{3}{1}=\frac{3}{1!}=\frac{3!}{2!1!}$ scelte per collocare la E, $\binom{2}{1}=\frac{2}{1!}=\frac{2!}{1!1!}$ scelte per collocare la I, ed infine $\binom{1}{1}=\frac{1}{1!}=1$ scelta obbligatoria per collocare la C.

RIASSUMENDO

$$\begin{split} N_{A}(\textit{MATEMATICA}) &= \begin{pmatrix} \frac{A}{10} \\ 10 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} \frac{M}{7} \\ 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{E}{5} \\ 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{I}{3} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{C}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{C}{1} \\ 1 \end{pmatrix} \\ &= \frac{10 \cdot 9 \cdot 8}{3!} \cdot \frac{7 \cdot 6}{2!} \cdot \frac{5 \cdot 4}{2!} \cdot \frac{3}{1!} \cdot \frac{2}{1!} \cdot \frac{1}{1!} \\ &= \frac{10!}{3! \ 2! \ 2! \ 5!} \cdot \frac{\cancel{5}!}{2! \ \cancel{5}!} \cdot \frac{\cancel{5}!}{2! \ \cancel{5}!} \cdot \frac{\cancel{5}!}{1! \ \cancel{2}!} \cdot \frac{\cancel{2}!}{1! \ 1!} \cdot 1 \\ &= \frac{10!}{3! \ 2! \ 2! \ 1! \ 1! \ 1!}. \end{split}$$

numero degli ANAGRAMMI di MATEMATICA - II modo

Si può pensare di avere a disposizione 10 tessere:

$$A_1$$
, A_2 , A_3 , M_1 , M_2 , T_1 , T_2 , E_1 , I_1 , C_1 .

Possiamo permutarle in 10! modi, ottenendo così sicuramente tutti gli anagrammi di MATEMATICA, ma alcune permutazioni corrispondono allo stesso anagramma: infatti permutando tra loro A_1 , A_2 , A_3 (in 3! modi) l'anagramma rimane invariato, e lo stesso accade permutando tra loro M_1 , M_2 (in 2! modi), oppure T_1 , T_2 (in 2! modi). E quindi il numero totale degli anagrammi si ottiene dividendo 10! per $3! \cdot 2! \cdot 2!$:

$$\frac{10!}{3!\,2!\,2!} = \frac{10!}{3!\,2!\,2!\,1!\,1!\,1!}.$$

(segue un esempio)

In altre parole possiamo ottenere tutte le permutazioni nel seguente modo: per ogni anagramma di MATEMATICA, ad esempio MAMATTACIE basta considerare che

$$M_1A_1M_2A_2T_1T_2A_3C_1I_1E_1$$
, $M_2A_1M_1A_2T_1T_2A_3C_1I_1E_1$, $M_1A_1M_2A_3T_1T_2A_2C_1I_1E_1$, $M_2A_1M_1A_3T_1T_2A_2C_1I_1E_1$,, etc.

sono $3!\cdot 2!\cdot 2!\cdot 1!\cdot 1!\cdot 1!$ permutazioni delle 10 tessere che danno luogo allo stesso anagramma. Lo stesso vale per ogni altro anagramma. Quindi

$$10! = N_A(MATEMATICA) \cdot 3! \cdot 2! \cdot 2! \cdot 1! \cdot 1! \cdot 1!$$

ESERCIZIO

Calcolare il numero degli anagrammi della parola

PATATE con 2 lettere A, 2 lettere T, 1 lettera E 1 lettera P

e scrivere l'espressione del numero degli anagrammi della parola

RABARBARO con 3 lettere A, 3 lettere R, 2 lettere B, 1 lettera O

Vediamo ora come calcolare in generale il numero degli gli anagrammi (anche senza senso) di una parola di lunghezza r, e con n tipi diversi di lettere, di cui k_1 lettere uguali alla lettera numero 1 (ad esempio la A), k_2 uguali alla lettera numero 2, **diversa dalla precedente**, (ad esempio la lettera B), k_3 uguali alla lettera numero 3, **diversa dalle precedenti** (ad esempio C),..., k_n uguali alla lettera numero n, **diversa da tutte le precedenti**.

OSSERVIAMO CHE NECESSARIAMENTE $k_i \geq 0$ e $\sum_{i=1}^{n} k_i = r$

Generalizziamo ora i due procedimenti usati nei due Esempi precedenti per verificare che il NUMERO DEGLI ANAGRAMMI è dato dal coefficiente multinomiale, ossia

$$\boxed{\frac{r!}{k_1! \ k_2! \ k_3! \ \cdots \ k_{n-1}! \ k_n!} \stackrel{\text{def.}}{=} \binom{r}{k_1, k_2, ..., k_n}}, \quad \text{dove } k_i \ge 0 \text{ e } \sum_{i=1}^n k_i = r}$$

Per l'anagramma della parola si hanno a disposizione r posti e tra questi r posti ne vanno scelti k_1 dove collocare la lettera numero 1, e ciò si può fare in $\binom{r}{k_1}$ modi.

Tra i rimanenti $r - k_1$ posti ne vanno poi scelti k_2 dove collocare la lettera numero 2, e ciò si può fare in $\binom{r-k_1}{k_2}$ modi.

Proseguendo si ottiene che il numero cercato è dato dal coefficiente multinomiale, ossia

$$\binom{r}{k_{1}} \binom{r-k_{1}}{k_{2}} \binom{r-(k_{1}+k_{2})}{k_{3}} \dots$$

$$\dots \binom{r-(k_{1}+k_{2}+\dots+k_{n-2})}{k_{n-1}} \binom{r-(k_{1}+k_{2}+\dots+k_{n-1})}{k_{n}}$$

$$= \binom{r}{k_{1}} \binom{r-k_{1}}{k_{2}} \binom{r-k_{1}-k_{2}}{k_{3}} \dots \binom{k_{n-1}+k_{n}}{k_{n-1}} \binom{k_{n}}{k_{n}}$$

$$= \frac{r!}{k_{1}! \binom{r-k_{1}}{r-k_{1}-k_{2}}!} \frac{\binom{r-k_{1}-k_{2}}{k_{2}!} \frac{\binom{r-k_{1}-k_{2}}{r-k_{1}-k_{2}-k_{3}}!}{k_{2}! \binom{r-k_{1}-k_{2}}{r-k_{1}-k_{2}-k_{3}}!} \dots \frac{\binom{k_{n-1}+k_{n}}{k_{n-1}!} \binom{r-k_{1}}{k_{n}}!}{k_{n-1}! \binom{r-k_{1}-k_{2}}{k_{n}}!} \cdot 1$$

Lasciamo al lettore di ripetere il ragionamento per ottenere il numero degli anagrammi, quando si hanno a disposizione r tessere con k_i tessere con la lettera i e numerate da 1 a k_i , per i=1,2,...,n, sempre con

$$k_1 \geq 0, \quad \sum_{i=1}^n k_i = r$$

(ovviamente se $k_i = 0$ allora non ci sono tessere con la lettera i). Ossia se $N_A(r; k_1, k_2, ..., k_n)$ è il numero degli anagrammi della parola, allora

$$r! = N_A(r; k_1, k_2, ..., k_n) \cdot k_1! \cdot k_2! \cdot \cdots \cdot k_n!$$

È importante osservare che il coefficiente multinomiale

$$\binom{r}{k_1, k_2, \dots, k_n} = \frac{r!}{k_1! k_2! \cdots k_n!}$$

permette di ottenere i modi di dividere r elementi in n gruppi **etichettati**, di cui il gruppo 1 ha cardinalità k_1 , il gruppo 2 ha cardinalità k_2 ,..., il gruppo n ha cardinalità k_n .

Esempio dobbiamo dividere 10 ragazzi in 3 squadre: la squadra **ROSSA**, da **3** ragazzi, la squadra **VERDE**, da **3** ragazzi, e la squadra **GIALLA**, da **4** ragazzi.

Vedremo ora che il problema di calcolare questo numero è lo stesso che calcolare gli anagrammi della parola

RRRVVVGGGG

Il numero cercato coincide con il numero degli anagrammi della parola

RRRVVVGGGG

infatti per ottenere i tre gruppi: 3 Rossi, 3 Verdi, 4 Gialli basta associare un colore ad ognuno dei dieci ragazzi (che indichiamo con i numeri 1,2,...,10) e l'anagramma RRVVRGGVGG è una rappresentazione della funzione

$$1\mapsto R,\quad 2\mapsto R,\quad 3\mapsto V,\quad 4\mapsto V,\quad 5\mapsto R,$$

$$6 \mapsto G$$
, $7 \mapsto G$, $8 \mapsto V$, $9 \mapsto G$, $10 \mapsto G$,

ossia la squadra Rossa è composta dai ragazzi $\{1, 2, 5\}$, la squadra Verde è composta dai ragazzi $\{3, 4, 8\}$, e infine la squadra Gialla è composta dai rimanenti ragazzi $\{6, 7, 9, 10\}$.

In altre parole, nell'esempio precedente, abbiamo una terna

ORDINATA/ETICHETTATA di sottoinsiemi

 $H_R = \{1, 2, 5\}, H_V = \{3, 4, 8\} \text{ ed } H_G = \{6, 7, 9, 10\},$

che formano una partizione dell'insieme $\{1,2,3,4,5,6,7,8,9,10\}$

$$\left(\overbrace{\{1,\,2,\,5\}}^{H_R},\,\overbrace{\{3,\,4,\,8\}}^{H_V},\,\overbrace{\{6,\,7,\,9,\,10\}}^{H_G}\right)$$

in cui

il primo insieme H_R rappresenta l'insieme degli elementi della squadra **ROSSA**, il secondo insieme H_V rappresenta l'insieme degli elementi della squadra **VERDE**, e l'ultimo insieme H_G rappresenta l'insieme degli elementi della squadra **GIALLA**. Il numero di questo tipo di oggetti è dato dal coefficiente multinomiale

$$N(RRRVVVGGGG) = \binom{10}{3,3,4} = \frac{10!}{3!3!4!}$$

Va sottolineato che, ad esempio,

$$\left(\overbrace{\{1,\,2,\,5\}}^{\textit{H}_{\textit{R}}}, \overbrace{\{3,\,4,\,8\}}^{\textit{H}_{\textit{V}}}, \overbrace{\{6,\,7,\,9,\,10\}}^{\textit{H}_{\textit{G}}}\right) \neq \left(\overbrace{\{3,\,4,\,8\}}^{\textit{H}_{\textit{R}}}, \overbrace{\{1,\,2,\,5\}}^{\textit{H}_{\textit{V}}}, \overbrace{\{6,\,7,\,9,\,10\}}^{\textit{H}_{\textit{G}}}\right)$$

in quanto, ad esempio, la squadra ROSSA nella prima terna è $\{1, 2, 5\}$, mentre nella seconda terna la squadra ROSSA è $\{3, 4, 8\}$

ATTENZIONE!

se non ci interessa etichettare i gruppi (**in questo esempio con i colori**), il numero dei modi è diverso e va calcolato in modo opportuno.

ESEMPIO: se invece vogliamo dividere i ragazzi in **tre squadre** (**NON**

ETICHETTATE, ovvero non colorate) di cui due squadre da 3

elementi, e **una squadra** da **4** elementi, in sostanza stiamo cercando una terna **NON ORDINATA** di sottoinsiemi

$${\{1, 2, 5\}, \{3, 4, 8\}, \{6, 7, 9, 10\}}$$

Ovviamente è equivalente a dare la seguente famiglia

$$\left\{ \left\{ \{1, 2, 5\}, \{3, 4, 8\} \right\}, \{6, 7, 9, 10\} \right\}$$

che chiaramente coincide con

$$\left\{ \left\{ \{3,\,4,\,8\},\,\{1,\,2,\,5\}\right\} ,\,\{6,\,7,\,9,\,10\} \right\}$$

ossia l'ordine in $\big\{\{1,\,2,\,5\},\,\{3,\,4,\,8\}\big\}$ non ha importanza.

Confrontare l'uso delle PARENTESI GRAFFE, quando **l'ordine non ha importanza** con il precedente uso delle PARENTESI TONDE, quando invece **l'ordine non aveva** importanza

Dovrebbe essere quindi chiaro che il numero di tali oggetti si ottiene dal precedente coefficiente multinomiale diviso per 2!, che è il numero delle permutazioni di qualunque insieme di cardinalità 2, in queso caso i due elementi sono due sottoinsiemi di cardinalità 3 (nell'esempio si tratta delle permutazioni di $\{\{1,\,2,\,5\}$, $\{3,\,4,\,8\}\}$) ossia

$$\frac{1}{2!1!} \cdot \binom{10}{3,3,4} = \frac{1}{2!1!} \cdot \frac{10!}{3!3!4!}$$

Inoltre abbiamo diviso per 1! perché essendoci un unico insieme/elemento di cardinalità 4 c'è una sola permutazione.

Se invece avessimo 14 ragazzi da dividere in 4 squadre, di cui 2 squadre da 3 elementi e 2 squadre da 4 elementi, CON ETICHETTE/COLORI DIVERSI allora il numero dei modi diversi è il coefficiente multinomiale

$$\binom{14}{3}\binom{11}{3}\binom{8}{4}\binom{4}{4}=\frac{14!}{3!3!4!4!}$$

MENTRE se facciamo la divisione in gruppi/squadre **SENZA ETICHETTE/COLORI**, allora il numero dei modi diviene

$$\frac{1}{2! \, 2!} \, \cdot \, \binom{14}{3} \, \binom{11}{3} \, \binom{8}{4} \, \binom{4}{4} = \frac{1}{2! \, 2!} \frac{14!}{3! 3! 4! 4!}$$